The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 X 1 1 1 1 1 1 1 0 1 X 1 1 1 2 1 1 1 X 1 1 X 1 X 1 2 1 1 2 1 1 2 X 1 X 1 1 X 1 1 X 1 X 2 X X 1 1 X 1 1 1 X 1 0 X 0 0 0 X X+2 X 0 2 2 0 X X+2 X X+2 X+2 X+2 X+2 2 0 0 X+2 2 0 2 X X X+2 2 X+2 X X+2 2 2 0 X X X X 2 2 0 X X 0 0 0 X 0 X 2 X X 2 2 0 X X X+2 2 2 2 X X+2 X+2 X X X+2 2 2 2 2 2 X 0 X+2 X+2 X+2 X+2 2 2 2 X+2 2 2 X X X+2 X X+2 0 0 0 X 0 X X X+2 0 0 0 X+2 X+2 X X 2 0 X 2 0 X+2 X+2 2 X+2 2 X+2 0 2 2 X+2 X+2 0 X+2 0 2 0 X+2 X+2 X+2 2 X 0 0 2 2 0 0 2 X+2 X X+2 X 2 X X+2 X+2 0 0 0 X 2 X X+2 X+2 2 X X X+2 2 X+2 X 0 X+2 X+2 0 0 X+2 X+2 X+2 X 0 0 X X+2 2 X+2 X+2 X+2 X X+2 X 2 0 0 0 0 X X 0 X+2 X 2 X+2 X 2 2 X X 2 0 X+2 0 X 2 X X 0 2 X 0 X+2 X X X+2 2 X+2 0 0 X X 0 X X+2 2 X+2 0 X+2 2 X X 0 2 X 2 0 0 X 2 X+2 X+2 X X 2 X+2 X X+2 X X 0 X X+2 X X X+2 X+2 2 2 0 0 0 X+2 X 2 X+2 X+2 0 X 2 2 2 2 2 2 2 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 2 2 2 2 2 0 2 2 0 2 0 2 2 0 0 0 2 2 0 0 0 2 0 0 2 2 0 2 0 0 2 2 2 0 2 2 2 2 0 2 0 2 2 2 2 0 2 2 0 2 0 2 2 2 0 0 2 0 0 0 2 0 2 0 2 2 2 2 0 0 0 0 0 2 2 0 0 0 0 0 0 0 2 0 2 0 0 2 2 0 2 2 0 0 0 2 2 2 0 0 2 2 2 0 0 0 0 0 2 2 0 2 2 0 0 0 0 0 2 2 0 2 2 2 2 2 0 2 2 0 2 0 2 0 0 2 0 2 2 2 2 2 0 2 2 2 2 2 0 2 0 2 0 2 0 2 0 2 0 0 0 0 2 0 2 0 2 0 0 0 0 0 0 0 0 2 2 2 2 0 0 2 0 0 0 0 0 2 0 2 0 2 2 2 2 2 2 0 0 0 2 0 2 0 2 0 0 2 0 0 0 0 2 2 2 2 0 2 2 0 2 0 2 2 2 0 2 0 0 2 0 2 0 0 2 0 0 2 2 0 0 2 2 2 2 2 0 0 2 2 0 2 0 2 0 0 2 2 2 0 0 generates a code of length 92 over Z4[X]/(X^2+2,2X) who´s minimum homogenous weight is 82. Homogenous weight enumerator: w(x)=1x^0+30x^82+78x^83+128x^84+144x^85+185x^86+224x^87+257x^88+296x^89+329x^90+342x^91+317x^92+308x^93+294x^94+276x^95+194x^96+152x^97+103x^98+106x^99+83x^100+40x^101+57x^102+40x^103+32x^104+16x^105+22x^106+18x^107+12x^108+4x^109+2x^110+4x^111+1x^118+1x^142 The gray image is a code over GF(2) with n=368, k=12 and d=164. This code was found by Heurico 1.16 in 2.38 seconds.